If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-60x-4.8=0
a = 20; b = -60; c = -4.8;
Δ = b2-4ac
Δ = -602-4·20·(-4.8)
Δ = 3984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3984}=\sqrt{16*249}=\sqrt{16}*\sqrt{249}=4\sqrt{249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{249}}{2*20}=\frac{60-4\sqrt{249}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{249}}{2*20}=\frac{60+4\sqrt{249}}{40} $
| 1/3c=3/8;=3/4 | | -19+7h=-8h+6+20 | | a+66=78 | | -10-(-4)=x | | 18+16v=-10+14v | | 12x+15=3(x+6) | | -3+10y=-8 | | -2x-4(5x-19)=10 | | 11k-9=12k | | 3x+4÷4=10 | | -1+v=-10v+10v-10 | | 16=-4+-2x | | 8-5g=-10-7g | | 4r+3-8=-19 | | -z=-2z+3 | | 4u^2+1=0 | | 2-3r=-9r+9-r | | -7-m=3+m | | 4v^2-4v+5=0 | | 2340+0.03x=3900+0.02x | | -10-n=-3n | | 7v+3v=-4+7v+2v | | 5+g=9+2g | | -8d-5=-3d | | 4x+28=52+-4x | | 5s-18.38=-0.98+11s | | 4-10c=-9c | | 18y-11=13+14y | | -7-5r=-4r | | u=1.5=9.56 | | -7-6r=-4r | | 1-18u=-15u-4u+20 |